

Deploying Citrix NetScaler VPX on Oracle Cloud
Infrastructure
T E C H N I C A L D E T A I L D O C U M E N T | M A Y 2 0 1 8

Contents
Disclaimer ... 3

Revision History ... 3

Overview ... 4

Software Requirements ... 4

Assumptions .. 4

Audience ... 4

Target Scenarios.. 4

Technical Architecture .. 5

Preparing the OCI Tenancy .. 5

Sample Scenario.. 6

Create Virtual Cloud Network using the OCI Console .. 7

Create Internet Gateway ... 9

Create FrontEnd, BackEnd & Management Security Lists .. 10

Create FrontEnd, BackEnd & Management Route Tables ... 13

Create FrontEnd, BackEnd, Management & KVMHost Subnets ... 15

Create a Block Volume to hold the NetScaler VPX guest .. 18

Launch the Bare metal instance .. 20

Attach Secondary Virtual Network Interface Cards (VNICs) .. 23

Attach Block Volume to the KVM host (optional) ... 30

Install KVM on Bare Metal Host & Activate VT-d in the kernel .. 32

Attach a Block Volume to the KVM host to hold the NetScaler VM .. 35

Configure the Network on the KVM Host .. 37

Install NetScaler VPX on KVM ... 41

Attach the Network Devices to the Domain – SR-IOV Virtual Network Adapter Pool 41

Connect to the NetScaler Console .. 46

Disclaimer
The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle.

Revision History
The following revisions have been made to this white paper since its initial publication:

Date Revision

May 10, 2018 Initial release

May 21, 2018 Added Software Requirements section

Overview
This is a technical detail document for deploying Citrix NetScaler VPX to run as a guest image

running on top of KVM sitting on Bare Metal, on Oracle Cloud Infrastructure.

Software Requirements
This document was written based on the following software requirements:

• Citrix NetScaler VPX for KVM (RHEL), release 12.0 (Build 57.19+) – 1000 Platinum

license

• Oracle Linux 7.4+

Assumptions
This document assumes the following:

• You have a passing knowledge of KVM and some of the core concepts of working with

this hypervisor

• You understand the impact of guests sharing block storage devices and can determine

how your guests should share storage

• You understand how to install an operating system as a guest or you know how to copy a

virtual disk image between systems

• You have a working knowledge of Linux system administration and can navigate your

way around Linux and edit files

• You have created a Virtual Cloud Network (VCN) within your environment and you

have provisioned one or more subnets within this VCN.

• You have provisioned (or know how to provision) an Oracle Bare Metal Compute

instance

• Your KVM Host should have access to Internet

• You have access to Citrix NetScaler qcow2 image for KVM. You will have to import this

virtual machine image in qcow2 format.

Audience
Customers who want to deploy Citrix NetScaler VPX on OCI

Target Scenarios

• Secure remote access to XenApp, XenDesktop or XenMobile

• General server load balancing

Technical Architecture
OCI VCN, frontend & backend subne

The picture above highlight a typical architecture for deploying Citrix NetScaler VM to OCI. We

have BM instances in Frontend subnet (or “front-end” subnet), private instances in Backend subnet

(or “back-end” subnet). In addition to these subnets, you will also require a subnet for the KVM

host that can be completely separated from the Guest VM topology.

Preparing the OCI Tenancy

This guide is composed of 10 steps to setup the OCI Tenancy and deploy Citrix NetScaler VPX

as a KVM guest running on a BM instance:

1- Create Oracle Virtual Cloud Network

2- Create Internet Gateway, Security Lists & Route Tables

3- Create Subnets

4- Launch Bare Metal Instance (KVM Host)

5- Attach Secondary Virtual Network Interface Cards (vNICS)

6- Install KVM on the Bare Metal Host (OS Setup + Network cards with support to Virtual

Functions)

7- Upload qcow2 image file to Object Storage (Bucket) and create a PAR

8- Create KVM Domain

9- Attach Network Interfaces to KVM domain

10- Access NetScaler-VM as a KVM Guest

Sample Scenario

To illustrate how to setup OCI and the Citrix NetScaler VPX VM, we are providing a sample

logical diagram from a Customer Project that will be explored in the next sections:

Create Virtual Cloud Network using the OCI Console

Oracle Virtual Cloud Network is a software-defined network that you set up in Oracle data centers.

A subnet is a subdivision of a cloud network. Each subnet exists in a single Availability Domain

and consists of a contiguous range of IP addresses that do not overlap with other subnets in the

cloud network.

In the Console, click Networking.

Choose a compartment you have permission to work in (on the left side of the page). The page

will update to display only the resources in that compartment. If you're not sure which

compartment to use, contact an administrator

Click Create Virtual Cloud Network. Enter the following:

• Enter Create in Compartment: Leave as is

• Name: A friendly name for the cloud network. It doesn't have to be unique, and it cannot

be changed later in the Console (but you can change it with the API)

• Create Virtual Cloud Network Only: Make sure this radio button is selected.

• CIDR Block: A single, contiguous CIDR block for the cloud network. For example:

10.0.0.0/16. You cannot change this value later. For reference, here's a CIDR calculator

• Use DNS Hostnames in this VCN: If you want the instances in the VCN to have DNS

hostnames (which can be used with the Internet and VCN Resolver, a built-in DNS

capability in the VCN), select the check box for Use DNS Hostnames in this VCN.

Then you may specify a DNS label for the VCN, or the Console will generate one for

you. The dialog box will automatically display the corresponding DNS Domain Name

for the VCN (<VCN DNS label>.oraclevcn.com)

• Click Create Virtual Cloud Network

• The cloud network is then created and displayed on the Virtual Cloud Networks page in

the compartment you chose. Next you should create all the required resources that is

required by the subnets (Internet Gateway, Security Lists, etc).

Create Internet Gateway

• Click on the VCN link “netscaler-vcn”

• Click on Internet Gateways on the left hand side

• Click on Create Internet Gateway

• Enter the following to Create the Internet Gateway

 Compartment: In the default VCN Compartment.

 Name: igw

Create FrontEnd, BackEnd & Management Security Lists

Create FrontEnd Security List

• Click on the VCN link “netscaler-vcn”

• Click on Security Lists on the left hand side

• Click on Create Security List

• Enter the following to Create the FrontEnd Security List

 Compartment: In the default VCN Compartment.

 Name: front-end-sec-list

 Under Allow Rules for Ingress, enter the following values:

Stateless Source CIDR IP Protocol Source Port

Range

Destination

Port Range

unchecked 0.0.0.0/0 TCP - 80

unchecked 0.0.0.0/0 TCP - 443

unchecked 0.0.0.0/0 SSH (TCP/22) - 22

unchecked 10.0.0.0/16 All Protocols - -

Under Allow Rules for Egress, enter the following values:

Stateless Source CIDR IP Protocol Source Port

Range

Destination Port

Range

unchecked 0.0.0.0/0 All Protocols - -

Create BackEnd Security List

• Click on Create Security List

• Enter the following to Create the BackEnd Security List

Compartment: In the default VCN Compartment.

 Name: back-end-sec-list

 Under Allow Rules for Ingress, enter the following values:

Stateless Source CIDR IP Protocol Source Port

Range

Destination

Port Range

unchecked 10.0.0.0/16 All Protocols - -

Under Allow Rules for Egress, enter the following values:

Stateless Source CIDR IP Protocol Source Port

Range

Destination Port

Range

Unchecked 0.0.0.0/0 All Protocols - -

Create Management Security List

• Click on Create Security List

• Enter the following to Create the Management Security List

Compartment: In the default VCN Compartment.

 Name: mgmt-sec-list

 Under Allow Rules for Ingress, enter the following values:

Stateless Source CIDR IP Protocol Source Port

Range

Destination Port

Range

unchecked 0.0.0.0/0 SSH (TCP/22) - 22

unchecked 10.0.0.0/16 All Protocols

Under Allow Rules for Egress, enter the following values:

Stateless Source CIDR IP Protocol

unchecked 0.0.0.0/0 All Protocols

Note: You can modify all the security lists accordingly to the customer requirements/needs, e.g.

only allow access from one particular IP/range from a trusted source to access management

interface, etc.

At the end you will have the following Security Lists created:

Create FrontEnd, BackEnd & Management Route Tables

Create FrontEnd Route Table

• Click on the VCN link “netscaler-vcn”

• Click on Route Tables on the left hand side

• Click on Create Route Table

• Enter the following to Create the FrontEnd Route Table

 Compartment: In the default VCN Compartment.

 Name: front-end-rt

 Under Route Rules, enter the following values:

Destination

CIDR Block

Target

Type

Compartment Target Internet Gateway

0.0.0.0/0 Internet

Gateway

<Default VCN

compartment>

Select

<DefaultInternetGateway>

Create BackEnd Route Table:

• Click on Create Route Table

• Enter the following to Create the BackEnd Route Table

 Compartment: In the default VCN Compartment.

 Name: back-end-rt

 Under Route Rules, delete the existing row. NetScaler will be responsible for

routing the packages from back-end to front-end/public internet.

Create Management Route Table

• Click on the VCN link “netscaler-vcn”

• Click on Route Tables on the left hand side

• Click on Create Route Table

• Enter the following to Create the Management Route Table

 Compartment: In the default VCN Compartment.

 Name: mgmt-rt

 Under Route Rules, enter the following values:

Destination

CIDR Block

Target

Type

Compartment Target Internet Gateway

0.0.0.0/0 Internet

Gateway

<Default VCN

compartment>

Select

<DefaultInternetGateway>

At the end you will have the following Route Tables created on your environment:

Create FrontEnd, BackEnd, Management & KVMHost Subnets

Create FrontEnd Subnet

• Click on Create Subnet

• Enter the Following for creating the Subnet:

 Name: front-end

 Availability Domain: US-ASHBURN-AD-1 (or pick up another according to the

region you are deploying your solution)

 CIDR Block: A single, contiguous CIDR block for the cloud network. For

example: 10.0.200.0/24

 DHCP Options: Default DHCP Options for netscaler-vcn

 Route Table: <Select front-end-rt>

 Subnet Access: PUBLIC Subnet

 Security Lists: <Select front-end-sec-list>

Create BackEnd Subnet

• Enter the Following for creating the Subnet:

 Name: back-end

 Availability Domain: US-ASHBURN-AD-1 (or pick up another according to the

region you are deploying your solution)

 CIDR Block: A single, contiguous CIDR block for the cloud network. For

example: 10.0.100.0/24

 DHCP Options: Default DHCP Options for netscaler-vcn

 Route Table: <Select back-end-rt>

 Subnet Access: PRIVATE Subnet

 Security Lists: <Select back-end-sec-list>

Create Management Subnet which should be used for managing the KVM host.

• Enter the Following for creating the Subnet:

 Name: mgmt-subnet

Availability Domain: US-ASHBURN-AD-1 (or pick up another according to the

region you are deploying your solution)

 CIDR Block: A single, contiguous CIDR block for the cloud network. For

example: 10.0.1.0/24

 DHCP Options: Default DHCP Options for netscaler-vcn

 Route Table: <Select mgmt-rt>

 Subnet Access: PUBLIC Subnet

 Security Lists: <Select mgmt-sec-list>

At the end you will have the following Subnets created:

Create a Block Volume to hold the NetScaler VPX guest
You can either create a Block volume to hold the guest image data in case you select a

BM.Standard compute shape or save the NetScaler data direct into a local NVMe disk in case you

select a DenseIO shape. In the latter case, you should be responsible to protect the data by

following the process described here since the disks are not protected against failure by default.

In order to create a new Block Volume, Click on Block Volumes under Storage:

• Click on Create Block Volume

• Enter the following to launch the OCI bare metal instance

 Name : netscaler-guest-disk

Availability Domain: US-ASHBURN-AD-1 (or pick up another according to the

region you are deploying your solution)

Size (in GB): 50

Backup Policy: <Select the most appropriated according to customer

requirement>

Launch the Bare metal instance
Click on Instances under Compute

• Enter the following to launch the OCI bare metal instance

 Name : kvm-host-netscaler

 Availability Domain: : US-ASHBURN-AD-1 (or pick up another according to the

region you are deploying your solution)

 Image Source: ORACLE-PROVIDED OS IMAGE

 Image: Oracle Linux 7.x

 Shape Type: Bare Metal Machine

 Shape: BM.Standard1.36 or BM.DenseIO1.36

 Image Build: latest

 VCN: netscaler-vcn

 Subnet: management

 Assigned Public IP : Checked

 Hostname: kvm-host-netscaler

 SSH keys: Provide the public ssh keys to access the intance

The BM instance will be created within the specified VCN and subnet with an assigned Public IP

Attach Secondary Virtual Network Interface Cards (VNICs)

A VNIC enables an instance to connect to a VCN and determines how the instance connects with

endpoints inside and outside the VCN. Each VNIC resides in a subnet in a VCN and includes these items:

• One primary private IPv4 address from the subnet the VNIC is in, chosen by either you

or Oracle.

• Up to 31 optional secondary private IPv4 addresses from the same subnet the VNIC is in,

chosen by either you or Oracle.

• An optional public IPv4 address for each private IP, chosen by Oracle but assigned by

you at your discretion.

• An optional hostname for DNS for each private IP address (see DNS in Your Virtual Cloud

Network).

• A MAC address.

• A VLAN tag assigned by Oracle and available when attachment of the VNIC to the

instance is complete (relevant only for bare metal instances).

• A flag to enable or disable the source/destination check on the VNIC's network traffic

(see Source/Destination Check).

Note that the default primary VNIC of the kvm-host is attached to the management subnet and is
created automatically when we launched the instance:

Now you should create secondary VNICs and attach secondary IPs that will be attached to the Guest VM
(NetScaler VPX). These vnics should connect to FrontEnd and BackEnd subnets, according to the table
below:

VNIC Name Subnet Hostname Secondary IP hostname

vnic2 front-end nsip vip-gateway

vnic3 back-end snip vip-lb

Create vnic2 for NetScaler VM (Guest) that will be used as NSIP.

• Go to Instance Details page

• Click on Attached VNICs link on the left hand side

• Click on Create VNIC

• Enter the Following for creating the VNIC:

 Name: vnic2

Virtual Cloud Network: <Select netscaler-vcn VCN>

Subnet: <Select front-end Subnet>

Assign public IP Address: Checked

Hostname: nsip

Create a Secondary IP Address for the VIP (Gateway):

• Go to Instance Details page

• Click on Attached VNICs link on the left hand side

• Click on vnic2

• Click on Assign Private IP Address

• Enter the Following for creating the Private IP Address:

 Hostname: vip-gateway

• Enter the Following for creating the Public IP Address:

o Select Reserved Public IP

o If you don’t have one already in place, you can select <Create a New Reserved

Public IP> selector and then enter a Reserved Public IP Name: vip-gateway

Create vnic3 for NetScaler VM (Guest) that will be used as SNIP

• Go to Instance Details page

• Click on Attached VNICs link on the left hand side

• Click on Create VNIC

• Enter the Following for creating the VNIC:

 Name: vnic3

Virtual Cloud Network: <Select netscaler-vcn VCN>

Subnet: <Select back-end Subnet>

Hostname: snip

Create a Secondary IP Address for the VIP (Load Balancer):

• Go to Instance Details page

• Click on Attached VNICs link on the left hand side

• Click on vnic3

• Click on Assign Private IP Address

• Enter the Following for creating the Private IP Address:

 Hostname: vip-lb

Take notes of all VNICS Private/Public IP Address, MAC Address & VLAN Tag. This

information will be used further for setting up the KVM domain.

Attach Block Volume to the KVM host (optional)

• Go to Instance Details page

• Click on Attached Block Volumes link on the left hand side

• Click on Attach Block Volume

• Enter the Following for attaching the Block Volume:

 Block Volume Compartment: <SelectVCN Compartment>

Block Volume: <Select netscaler-guest-disk >

Disk is now attached to the kvm-host:

Install KVM on Bare Metal Host & Activate VT-d in the kernel
All the next steps were created based on the official OCI Whitepaper available in the

documentation: Installing and configuring KVM on Bare Metal Instances with Multi-VNIC:

• Connect to the kvm-host-vnic in the KVM host via SSH (user is opc)

• Update the system and install KVM and other softwares (run with sudo su -). Make sure

you have an existing yum repo configured and enabled for UEK4. Then install all the

required packages.

Source: Configure a KVM Host with UEK4:

cd /etc/yum.repos.d/

wget http://yum.oracle.com/public-yum-ol7.repo

vim public-yum-ol7.repo

[ol7_latest]

name=Oracle Linux $releasever Latest ($basearch)

baseurl=http://yum.oracle.com/repo/OracleLinux/OL7/latest/$basearch/

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1

enabled=1

[ol7_UEKR4]

name=Latest Unbreakable Enterprise Kernel Release 4 for Oracle Linux

$releasever ($basearch)

baseurl=http://yum.oracle.com/repo/OracleLinux/OL7/UEKR4/$basearch/

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1

enabled=1

yum install -y qemu-kvm qemu-img virt-manager virt-install libvirt

libvirt-python libvirt-client lshw

systemctl restart libvirtd

systemctl status libvirtd

After restarting libvirtd daemon double check if it’s active.

• Create and run the following script to activate VT-d in KVM, which is used to configure

the host for PCI Passthrough. This will add the “intel_iommu=on” line to the end of the

GRUB_CMDLINE_LINUX.

cd /home/opc

vim activate-vt-d.sh

Copy and paste the content below into the file:

#!/bin/bash

#Modify grub

GRUBFILE=/etc/default/grub

TMPFILE=`mktemp`

sed -e 's/^\(GRUB_CMDLINE_LINUX=".*\)"/\1 intel_iommu=on"/' $GRUBFILE

> $TMPFILE

size=`du -b $GRUBFILE | awk '{print $1}'`

nsize=`du -b $TMPFILE | awk '{print $1}'`

if [[$nsize -lt $size]]

then

 echo "Error"

 exit 1

fi

chown --reference=$GRUBFILE $TMPFILE

chmod --reference=$GRUBFILE $TMPFILE

mv $TMPFILE $GRUBFILE

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

Set the file permissions & run the script:
chmod +x activate-vt-d.sh

./activate-vt-d.sh

• Enable tuned and set the performance optimization for virtual-host

systemctl enable tuned

systemctl start tuned

tuned-adm profile virtual-host

tuned-adm active

• Install oci-utils package for Oracle Linux, if not yet installed.

$ sudo yum install -y oci-utils

Attach a Block Volume to the KVM host to hold the NetScaler
VM

• Attach the scsi disk (block volume) previously created.

oci-iscsi-config -s

• Create a file system and mount the disk by running the script below:

#!/bin/bash

mkfs.xfs /dev/sdb

mkdir /mnt/netscaler-vm

mount -t xfs /dev/sdb /mnt/netscaler-vm/

sdb_uuid=`blkid /dev/sdb -s UUID -o value`

echo "UUID=$sdb_uuid /mnt/netscaler-vm xfs

defaults,noatime,_netdev,nofail" >> /etc/fstab

• Upload the NetScaler qcow2 image file to /mnt/netscaler-vm

Configure the Network on the KVM Host

NetScaler VM Series was tested on Oracle Cloud Infrastructure BM*1* (first-generation) compute

shape, which comes with only one active Intel 82599 based 10G NIC. We can use a combination

of SR-IOV virtual functions (VFs) and the multi-VNIC feature of OCI to support the connectivity

of the NetScaler to the network.

Below you can check that there are 2 network controllers:

And how they are mapped to the network cards - note the PCI Address “0000:03.00.0 &

0000:03.00.1”.

In the KVM Bare Metal host (X5 – BM.1 shapes), the NIC 0 is automatically configured with the

primary VNIC’s IP configuration (the IP address, DNS hostname, and so on). The second NIC 1

is not active and should not be used. ens3f0 is the only interface whose state is “up”.

All the next steps were created based on the official OCI Whitepaper available in the

documentation: Installing and configuring KVM on Bare Metal Instances with Multi-VNIC.

In order to avoid losing your network configuration across reboots, we will create a Linux Service

and also configure the network device files attached to the KVM hypervisor in the Bare Metal Host.

• First step is to create a script and save to /usr/bin/initialize-kvm-network.sh . This script will

hold the logic to enable the Virtual Functions Device and also to initialize the additional

network devices. Copy the content from the snippet below into the script and make sure that

this file is executable (chmod +x /usr/bin/initialize-kvm-network.sh):

Note: You can modify the number of virtual functions through the parameter ‘number_vfs’

#!/bin/sh

function build_sriov_vf {

 number_vfs=2

 vnic_json=`curl -s http://169.254.169.254/opc/v1/vnics/`

 vnic_count=`echo ${vnic_json} | jq -r 'length'`

 count=0

 for field in macAddr vlanTag

 do

 read -ra ${field} <<< `echo ${vnic_json} | jq -r '.[0:length] |

.[].'"${field}"''`

 done

 while [${count} -lt ${vnic_count}]

 do

 if [${vlanTag[${count}]} -eq 0]

 then

 physdev=`ip -o link show | grep ${macAddr[${count}]} | awk -F:

'{gsub(/\s+/,"", $2);print $2}'`

 echo ${number_vfs} >

/sys/class/net/${physdev}/device/sriov_numvfs

 wait

 bridge link set dev ${physdev} hwmode vepa

 fi

 if [${vlanTag[${count}]} -gt 0]

 then

 ((vf_index = count - 1))

 ip link set ${physdev} vf ${vf_index} mac ${macAddr[${count}]}

spoofchk off

 fi

 ((count = count + 1))

 done

}

build_sriov_vf

#wait 30s to OS enable VFs

sleep 30s

• Next, run the script to enable Virtual Function devices

• Take notes of the Device associated with the virtual functions by running the command

below:

lshw -c network -businfo

• Run “ip link” to identify the corresponding MAC address for these devices. Make sure that

the MAC address of these devices matches the corresponding values of vnic2 and vnic3.

ip -o link show | grep enp

• Next, create a configuration file under /etc/sysconfig/network-scripts/ for each VF device,

based on the template below:

Filename: ifcfg-<VF Device>
DEVICE=<VF Device Name>

BOOTPROTO=none

ONBOOT=yes

MACADDR="<VNIC MAC ADDRESS>"

NM_CONTROLLED=no

MTU=9000

• Based on our example, we should have the following files:

Config File Content

/etc/sysconfig/network-scripts/ifcfg-enp3s16 DEVICE=enp3s16

BOOTPROTO=none

ONBOOT=yes

MACADDR="02:00:17:02:A5:C4"

NM_CONTROLLED=no

MTU=9000

/etc/sysconfig/network-scripts/ifcfg-enp3s16f2 DEVICE=enp3s16f2

BOOTPROTO=none

ONBOOT=yes

MACADDR="02:00:17:02:B9:4E"

NM_CONTROLLED=no

MTU=9000

• Next, we should create a vlan configuration file for each VF Device based on the template

below. The VLAN devices will become available to NetScaler.

Filename: ifcfg-<VF Device>.vlan<vlan tag>
DEVICE=vlan<vlan tag>

PHYSDEV=<VF Device>

BOOTPROTO=none

ONBOOT=yes

NM_CONTROLLED=no

VLAN="yes"

IPADDR="<private IP>"

NETMASK="<Subnet MASK>"

DNS1=169.254.169.254

• Again, we should have the following files:

Config File Content VLAN Link

name

/etc/sysconfig/network-scripts/ifcfg-

enp3s16.vlan2

DEVICE=vlan2

PHYSDEV=enp3s16

BOOTPROTO=none

ONBOOT=yes

NM_CONTROLLED=no

VLAN="yes"

IPADDR="10.0.200.2"

NETMASK="255.255.255.0"

DNS1=169.254.169.254

vlan2@enp3s16

/etc/sysconfig/network-scripts/ifcfg-

enp3s16f2.vlan3

DEVICE=vlan3

PHYSDEV=enp3s16f2

BOOTPROTO=none

ONBOOT=yes

NM_CONTROLLED=no

VLAN="yes"

IPADDR="10.0.201.2"

NETMASK="255.255.255.0"

DNS1=169.254.169.254

vlan3@enp3s16f2

• Then, append to /usr/bin/initialize-kvm-network.sh file the commands to start the network

devices.

ifup enp3s16

ifup enp3s16f2

ifup vlan2

ifup vlan3

• After that, we should create a service file: /etc/systemd/system/kvm-network.service
[Unit]

Description=Enable KVM Network

Wants=network-online.target

After=cloud-init-local.service network.target network-online.target

[Service]

Type=notify

ExecStart=/usr/bin/initialize-kvm-network.sh
ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

[Install]

WantedBy=multi-user.target

• Finally, enable and start the service:
systemctl daemon-reload

systemctl enable kvm-network.service

systemctl start kvm-network.service

• Now, in case of reboot, the service will be automatically restarted.

• Reboot your instance

Install NetScaler VPX on KVM

Make sure you completed all the steps of the previous section before installing NetScaler. The

libvirt API that is used to manage KVM includes a host of tools that allow you to create and

manage virtual machines. To install NetScaler VPX on OCI running on top of KVM hypervisor,

you can use any of the following methods:

1. Manually create the XML definition of the NetScaler VPX, then use virsh to

import the definition. Virsh is the most powerful tool that allows for full

administration of the virtual machine.

2. Use virt-install to create the definition for the NetScaler VPX and install it.

On this example we will use the approach (2), where virt-install will create the KVM domain,

install the guest image and then, virsh-attach will be used to attach network interfaces..

• Create the domain to place the NetScaler VM as the guest OS.
virt-install --arch=x86_64 --name=NETSCALER_VPX --ram=56000 --cpu Haswell-

noTSX --vcpus 2 --hvm --nonetwork --os-type unix --noautoconsole --disk

/mnt/netscaler-vm/netscaler.qcow2,format=qcow2,bus=virtio --graphics

vnc,port=5901,listen=0.0.0.0,password=Citrix123 --import

Notes:

• The list of parameters may change accordingly to the NetScaler version and customer

requirements. Verify NetScaler documentation for additional details.

• --nonetwork parameter was specified. This means that the network devices should be

attached to the domain in the upcoming steps.

•

Attach the Network Devices to the Domain – SR-IOV Virtual
Network Adapter Pool

Once domain creation completed, we will create a virtual network based on the NIC PCI physical

function. Using this method, KVM creates a pool of network devices that can be attached to the

NetScaler VM, and the size of the pool is determined by the number of VFs we created earlier.

In order to create a virtual network, we need to create a xml file based on the template below that

maps to the network device which hosts all the virtual functions:

<network>

 <name> [network_name] </name>

 <forward mode='hostdev' managed='yes'>

 <pf dev='[device name]'/>

 </forward>

</network>

So, in your example, ens3f0 is the device name mapped to the VFs and as the result we will have

the following xml:

Now we should load the new xml file into the KVM to create the network:

virsh net-define netscaler_vpx_network.xml

To start the virtual network, run the command: virsh net-start [network_name_in_xml]:

virsh net-start netscaler_vpx_network

To automatically start the network when running KVM you can call autostart:
virsh net-autostart netscaler_vpx_network

You can verify that the network was successfully attached by running virsh net-dumpxml

netscaler_vpx_network. The VF addresses should matches the PCI values we previously mapped.

Next, you should attach all the devices that you want to expose to the NetScaler VM by creating a

XML following the template below. Create one file for each interface, replace your information

for the various placeholders:

attach.xml
<interface type='direct'>

 <source dev='vlan[vnic vlan tag]' mode='passthrough'/>

 <target dev='macvtap[vnic vlan tag]'/>

 <model type='virtio'/>

 <alias name='net[vnic vlan tag]'/>

 <mac address='[vnic mac address]'/>

</interface>

In order to attach the interfaces to the domain, you should run the following command (per

interface/xml file):

virsh attach-device <your_domain_name> ./attach.xml –config

Below you have the list of interfaces we previously mapped:

Interface VNIC Name Private IP MAC VLAN

tag

VF

nsip vnic2 10.0.200.16

02:00:17:00:13:8E

2 0

snip vnic3 10.0.100.6 02:00:17:00:8C:26

3 1

• Create nsip.xml

<interface type='direct'>

 <source dev='vlan2' mode='passthrough'/>

 <target dev='macvtap2'/>

 <model type='virtio'/>

 <alias name='net2'/>

 <mac address='02:00:17:00:13:8E'/>

</interface>

• Attach the nsip/vnic2 device to the domain:
virsh attach-device NETSCALER_VPX ./nsip.xml --config

• Create snip.xml

<interface type='direct'>

 <source dev='vlan3' mode='passthrough'/>

 <target dev='macvtap3'/>

 <model type='virtio'/>

 <alias name='net3'/>

 <mac address='02:00:17:00:8C:26'/>

</interface>

• Attach the snip/vnic3 device to the domain:
virsh attach-device NETSCALER_VPX ./snip.xml --config

• Force restart the domain by running the commands below:

virsh destroy NETSCALER_VPX

virsh start NETSCALER_VPX

• You can verify all network devices are attached by running virsh dumpxml

NETSCALER_VPX

Connect to the NetScaler Console

• Once your domain is running, you can connect to the NetScaler console using virsh:
virsh console NETSCALER_VPX

• Press Enter to get access to the login page. It may take some time for NetScaler VPX to

complete boot process. After that, login to NetScaler with username/password:

nsroot/nsroot

• Configure NetScaler, e.g. set up NSIP, SNIP

nsip vnic2 10.0.200.16

02:00:17:00:13:8E

2 0

snip vnic3 10.0.100.6 02:00:17:00:8C:26

3 1

• NSIP setup:
set ns config -IPAddress <nsip/vnic2 ip_addr> -netmask <netmask>

show ns config

add route 0 0 <FrontEnd subnet gateway>

show route

save config

set ns config -IPAddress 10.0.200.16 -netmask 255.255.255.0

show ns config

add route 0 0 10.0.200.1

show route

save config

• SNIP Setup:
add ns ip <snip ip> <netmask> -type SNIP

show ns ip <snip ip>

add ns ip 10.0.100.6 255.255.255.0 -type SNIP

show ns ip 10.0.100.6

• Verify the Interfaces attached to your NetScaler (MAC address should match the values

were attached to the KVM domain):
show interface

• Check the IP addresses:

• Access the web interface (public IP associated with NSIP) of the NetScaler VPX.

	Disclaimer
	Revision History
	Overview
	Software Requirements
	Assumptions
	Audience
	Target Scenarios
	Technical Architecture
	Preparing the OCI Tenancy
	Sample Scenario
	Create Virtual Cloud Network using the OCI Console
	Create Internet Gateway
	Create FrontEnd, BackEnd & Management Security Lists
	Create FrontEnd, BackEnd & Management Route Tables
	Create FrontEnd, BackEnd, Management & KVMHost Subnets
	Create a Block Volume to hold the NetScaler VPX guest
	Launch the Bare metal instance
	Attach Secondary Virtual Network Interface Cards (VNICs)
	Attach Block Volume to the KVM host (optional)
	Install KVM on Bare Metal Host & Activate VT-d in the kernel
	Attach a Block Volume to the KVM host to hold the NetScaler VM
	Configure the Network on the KVM Host
	Install NetScaler VPX on KVM
	Attach the Network Devices to the Domain – SR-IOV Virtual Network Adapter Pool
	Connect to the NetScaler Console

